

Regional WA's Electricity Landscape and its Future.

A view of regional Western Australia

HORIZON

eneray for life

Remote communities

Marble Bar
Nullagine
Warmun
Wiluna
Ardyaloon
Beagle Bay
Bidyadanga

Camballin/Looma Djarindjin/Lombadina Kalumburu Yungngora Fitzroy Crossing Halls Creek

- Residential customers at times experiencing financial hardship and want more control over their bills
- High rates of tenancy creating disengagement in energy management and/or barriers to DER installation

Small tourism and agricultural / mining towns

Denham Sandstone
Exmouth Menzies
Hopetoun Gascoyne Junct
Laverton Cue
Norseman Coral Bay
Yaldoo Meekatharra

Sandstone Mount Magnet
Menzies Onslow
Gascoyne Junction Wyndham
Cue
Coral Bay

- High rates of tenancy creating disengagement in energy management and/or barriers to DER installation
- Strong seasonal or annual variation of population depending on commercial activity creating costly peak capacity to service for a short period of time

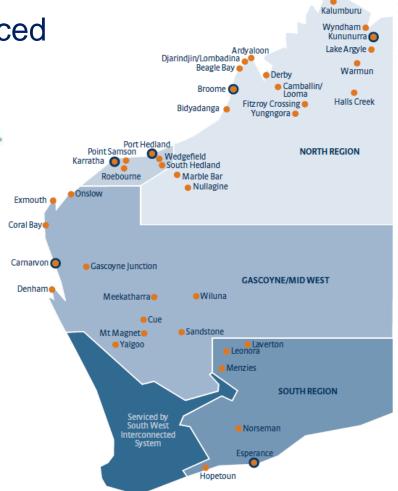
Regional centres

Broome
Carnarvon
Esperance
Karratha

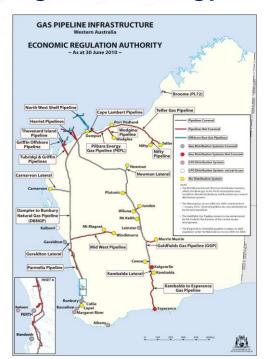
Port Hedland

- Thriving towns replicating all the needs of capital cities at a smaller scale
- Still strongly dependant on centralised generation but present opportunities to shrink the grid around them
- Create the incentives for development of economical activities around them

NWIS Regulatory Reform

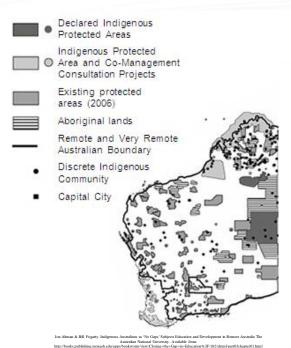


- This reform will involve increased use of Horizon Power's networks by others through a light handed regulatory regime
- Creation of the customer framework
- Changes to the funding arrangements for Horizon Power (the Tariff Equalisation Contribution) and;
- Changes to the way in which the NWIS networks are operated role allocation for the Australian Energy Market Operator (AEMO) as the Independent System Operator (ISO).


Horizon Power is uniquely placed

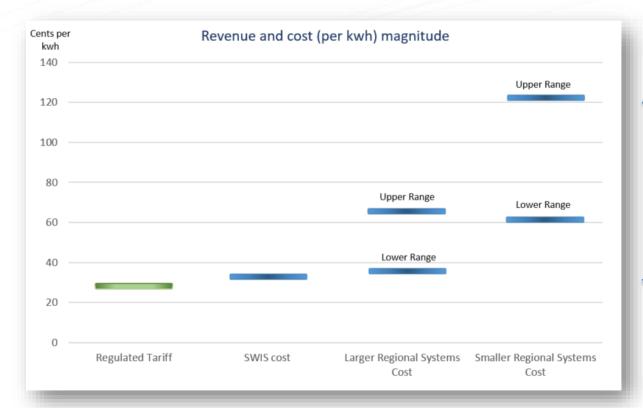
- Horizon Power is vertically-integrated
- Serves all of WA except for the South West Interconnected System
- 30+ remote microgrids
- Advanced metering
- 1 customer per 58 km²

Regional energy supply



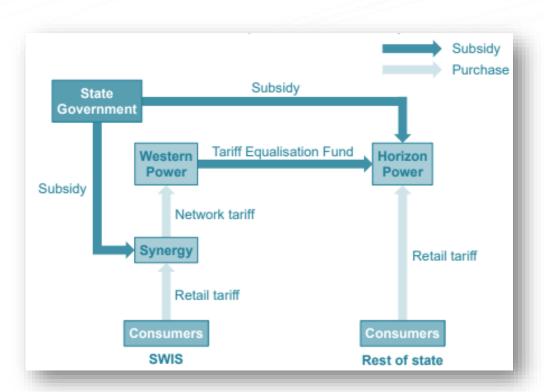
Gas pipeline infrastructure

Horizon Power System Fuel Type



There are approximately 200 additional remote microgrids that are not operated by Horizon Power

Revenue and cost to supply magnitudes



Subsidy range

- Level of subsidy depends on the system and customer type.
- System fuel mix and network size are key cost drivers.

Subsidy framework

State Government pays a direct subsidy to Synergy and Horizon Power. Western Power customers pays an indirect subsidy to Horizon Power's customers through the TEF.

The future

POWER

energy for life

Distributed solar

Technology

Will be decentralised to produce, consume, store & sell low-carbon electricity locally

Digital Phone Apps

Smart

Flexible

system

Appliances

Pricing Plans

Connected Trading **Platforms**

Flexible Regulatory

Frameworks

Networks

Will be safe, reliable, efficient & support the digitisation & automation of systems

Metering

Smart

Inverters

Augmented

Reality

Communications & **Analytics Platforms**

Markets

Customers

Will be empowered to

use electricity how they

choose, supported by

new products &

services

Will use data analytics to connect & incentivise participants to drive equitable pricing

Remote high cost locations – opportunities and challenges

Opportunities

- Digitalisation. Eg: Advanced metering infrastructure, mobile bill payments and energy monitoring
- Reduced costs by embracing renewables
- Reduced carbon emissions
- Equitable pricing
- Value added energy services

Challenges

- Small market
- Comparatively low household income
- High percentage of bills rebated or paid by a third party
- High level of transience
- Low level of owner occupiers
- Remote worker / skill shortages
- Seasonal weather events and harsh climate
- Communications infrastructure inadequacies

The rapid change is already upon us ...

energy for life

Modular generation capacity

High penetration renewable energy and storage

Stand-alone Power
Systems

Intelligent System Control

Multi-Flow network

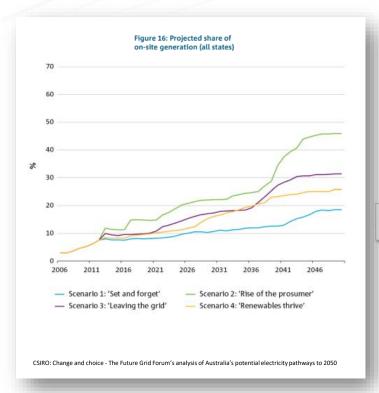
Intelligent Consumer Services

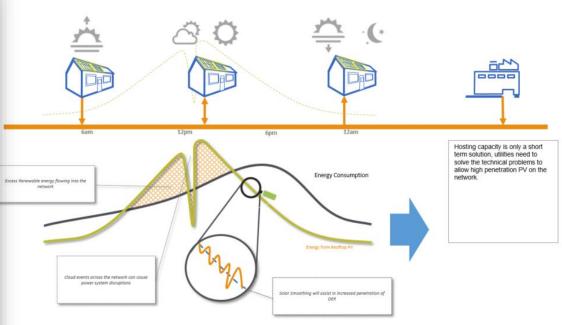
High penetration renewables and storage

Modular J Generation

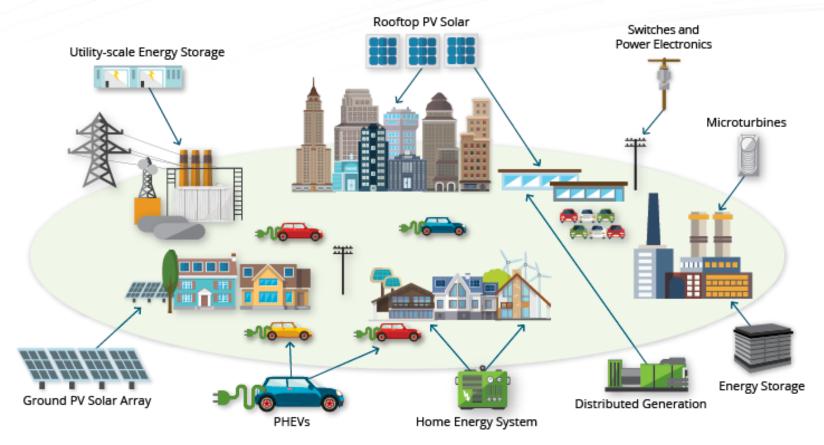
Standalone power systems

Multi-flow networks


Efficient demand based pricing and customer equity


Advanced Metering

Mega Challenge- Hosting Renewables



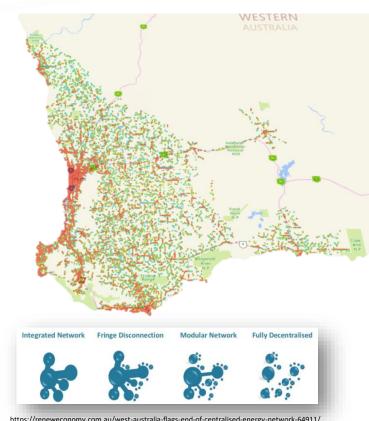
Future Challenge- many things to manage

Leading the energy revolution - The Onslow Story

energy for life

https://www.youtube.com/watch?v=m3glvLZt_Kc

- Home to Australia's largest DER microgrid.
- 50% of the town's electricity needs to be serviced from renewable energy sources.
- Includes a mix of distributed renewables, conventional gas powered generation and energy storage.
- Will reduce cost to supply Onslow and provide more flexibility for customers



Future electricity grids may be a 'federation' of HORIZO microgrids

eneray for life

- Electricity systems supplied by millions of microgeneration sources (not a handful large centralised generators) need new control architectures.
- Microgrids can provide this architecture at a local level and enable thousands of DERs to operate in harmony and constantly balance supply and demand.
- Large traditional grids may be re-architected over time for optimal efficiency as a federation of microgrids; usually functioning together but sometime independently (to minimise widespread outages).

